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1. INTRODUCTION

In 1985, Mumford and Shah introduced a mathematical model for solving the
segmentation problem (Reference 1). Segmentation and boundary detection algorithms
are basic tools for extracting global features out of digitized data.

The Mumford and Shah (M&Sh) functional (References 1 and 2) has the form

EwK)=a [lu-gf dut [|Vill du+1-4(K), 1)
Q-K Q-K

where Q denotes a rectangle in R?, d €{1,2,3, -} is the dimension of Q, g:Q — R®
denotes the image (g is u-measurable), ¢ €{1,2,3,---} is the number of channels, and
u:Q — R° is a smooth approximation to g. The rectangle Q is decomposed into a
finite collection of disjoint open sets O, (n = 1, 2, ..., N) and their boundaries

n=1 n=

N N
K =U 20, ; so that Q =[ 0,,]UK , and K is sufficiently nice to have a length,
1

denoted by £4(K). The disjoint open sets O, (n=1, 2, ..., N) and their boundaries

. N
K= U 20, together with u are called a segmentation of (Q2, g).

n=1
The goal is to construct two things:

1. A smoothed ideal image u:Q — R°
2. A setof boundaries K < Q

u and K are found by minimizing the functional E .
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The first term on the right-hand side (RHS) of Equation 1 ensures that u is a faithful
representation of g, the second term ensures that u is as smooth as possible on each
open set O, (the segments), and the last term prevents the boundaries from growing too
large. The technique is multi-scale. The parameters a and A are weighting factors that
control the quality of the approximation and the coarseness of the segmentation. The
technique allows the extraction of features at different levels of detail (scale). The
technique is also multichannel; » and g may be vector valued functions. It can be used
to segment images-of a scene when registered multiple data channels for the same scene
are available. These may be data channels from various sensors, hue channels, or
preprocessing channels such as wavelet or other transform channels. Thus, the M&Sh

model captures all the essential features that must be considered.

The aim of this report is to present an implementation of the region growing (RG)
method introduced in References 3 and 4 for minimizing the simplified M&Sh functional

Ew,K)= [Ju-glf du+2-4K). )

Their model assumes that #:Q — R° is a piecewise constant (PC) function defined

where A, is the average value of g on O, .

! n?

N
on | JO, , constant on each O,; 4|0, = 4

n=1

Thus, the second term in Equation 1 vanishes, leading to Equation 2.

The idea behind the RG method for minimizing Equation 2 is to select two adjacent
regions O;, O, and merge them; that is, the new average A; of g on O, VO, is found;

the boundary between O, and O, denoted by 2(0,,0;), is eliminated; and the
functional E is evaluated. If E decreases, then O, and O, are permanently merged,

leading to a coarser segmentation. Otherwise, another pair is considered. Starting with the
trivial segmentation, i.e., one where every region consists of only one point (pixel), this
procedure arrives at a segmentation with minimal (local) energy for the chosen scale
parameter A.If A is large, the emphasis is on the length of the boundaries K and the
minimization of E leads to fewer boundaries and hence to a coarser segmentation.

Conversely, a small A puts the emphasis on the first term of Equation 2, leading to an




!
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approximation u that follows g much more closely and allows for more boundaries. Thus,
asmall A leads to a finer segmentation. In the limit when A is zero, the minimization of
E forces u = g, leading to the finest possible segmentation, the trivial segmentation where
every region consists of a single point (pixel).

The merging criterion for merging two adjacent regions O, and O; is defined to be
the difference between E(u,K) and the new value E(#,K — 8(0,,0 ) after a merger.

: _ A,.j on O, V0, )
If u=4, oneach O, and o' = _ ", where 4 is the average value of g
u otherwise '

on O, L O;, then the merging criterion for the PC case (References 3 and 5) is given by

#OMO)
#(0,)+ u(0))

M, = E@ K) - @K = 40,,0,)) = A-£(0,,0,) - [4-4]. ©

where 1(0;) denotes the area of the open set O,. If M;; >0 there is a decrease in £ and
the regions O;, O, are merged.

While the expression on the RHS of Equation 3 for M;; appears in Reference 3, the

authors do not provide a derivation of it. A derivation of it cannot be found in Reference
4 either. Reference 5 presents a complete derivation of Equation 3 and its generalization
to the case where the approximations u,; are not PC; that is, the approximations u, are
restrictions to O, of functions belonging to a class of functions defined as the linear span
of a finite set of judiciously chosen functions f,, f;, ... , f, mapping Q into R°. For
example, this can include PC, piecewise affine (PA), piecewise polynomial, piecewise

exponential, piecewise sinusoidal approximations.

. 4
In the general setting of Reference 5, each u, =|O, has the form u, = Za"k S I
k=1

we let 4, =[a,, a,, --a,]" €eR’ and F=[f,if,---1f,], then u, can be written as
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_ #O0)u(0;) o :
u, = FA,. The weighting factor appearing in Equation 3 becomes a
#O,) + 1(0))

weighting matrix H, defined by

H, = M,[M, + M,]" M, @
where

M, = j F'Fdu (n=12,.,N). (5)

0,

The merging criterion in this general setting has the form

M, = E(u,K) - E(I,K - 8(0,,0,)) = 4-£&0,,0,) -4 - 4] . ©)

where the weighted norm | -|,, is defined as ||x||i, =x"Hx for x eR’.

Reference 5 also includes some examples showing the form that the functions
u, = FA, and the matrix F =[f;if,i---f,] take in various settings. These include the
multichannel PC, the multichannel PA, and the multichannel piecewise quadratic (PQ)

settings in various dimensions.

Here we use the results of Reference 5 and illustrate how one can implement the RG
method in dimension 2 for PC approximations u, in the single- and multichannel
settings. The multichannel PA implementation is described in Reference 6. Sufficient
information can be found in Reference 6 to implement the multichannel PQ algorithm

following similar steps.

In Section 2 we state the results of Reference 5 that will be needed here. A tiling
problem in the plane that arose as a result of trying to speed up our implementation is
discussed in Section 3. '
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A general description of the program structure is given in Section 4. This section is
generic in the sense that all of the different versions of the RG method that we have
implemented have the same structure. We have implemented the RG method in the PC
single- and multichannel settings in dimension 2 and in the PA single- and multichannel
settings in dimensions 2 and 3.

In Section 5 we descr{be in detail the Matlab functions that implement the single-
channel PC-RG method in two dimensions and we indicate the changes involved in the
multichannel implementation. These changes are minimal. Listings of the functions are
included in the Appendix for reference and for completeness. The changes involved in the
multichannel implementation are also listed. Thus, this report serves as documentation for

the two dimensional PC-RG programs in the single- and multichannel settings.

2. PIECEWISE APPROXIMATIONS

In this section we show how to obtain the piecewise approximations # on the sets O,
and how to compute the approximation u; on a union O, U O; from the approximations
on O, and O, .

Foreach n=1,2,.., N, let

v,=[F'gdu, (7)
0,
where g is a measure on Q (e.g., Lebesgue measure). Fix i and j in {1, 2, ..., N} and

4
define u;:Q—> R by u; = Zbkfk . Note that if B=[b, b, ---b,]", then u; = FB.

k=]

N
Define u:U O, > R° by u=u, on O, forall n

n=|
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N
Define H:UO,, —>Rbyu=

n=1

{u,.j on 0,V 0,

u otherwise.

Proposition 1. (Piecewise approximations to g ; The coefficient vectors 4, and B.)

{
@If u, = Za,,k f. approximates g on O, in the sense of least mean square error;
k=1 ,

. . « e s 2 .
that is, if {a,,,a,,,""*»a,,} minimize I“un — g|"du, then the vector of coefficients 4,
o,

satisfies the linear system M, 4, =V, (n=1,2,.,N).

n=on

(b) Similarly, if B minimizes j "uu - gH2dy, then B satisfies the linear system
’ 0,V0;

(M, + M)B=(;+V,).

() B=(M, + M_,.)'1 (M, 4 +‘MjAj) provided the inverse exists.
Proof. ( See Reference 5.)
Proposition 2. (The merging criterion.)

If u and & are as above and E(u,K) = J”u—gnzd,u + A-4(K), then Equation 6
Q-K

holds.

Proof. ( See Reference 5.)

2.1 MULTICHANNEL PIECEWISE CONSTANT APPROXIMATIONS

Suppose u is a PC approximation of g; that is, u is constant on each set O, and there

are ¢ channels. In this case F= I , the cxc identity matrix; because if
u, =la, a,, a,]",aconstant vector with c components, then
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0
0 0 _
un =anl 0 +an2 O + e +am: O =anl.f1 +ar12»f2 +”'+ancfc *
0] 0] 1]
_0..
‘ 10 -0
Therefore, f, =|1| « (k" - position), F=[f,:f2:---:fc]= : . , and
: ‘ 00 - 1
_O_

F'F=1.

Since M, = JI du = p(0,)-1 for all n, the weight matrix Hj; is a multiple of the

0,

identity matrix:

_ HO)-HO))
P 0+ u(0))

I and PP = #(0)-u(0))
W w0)+mO)

"

The merging criterion for the multichannel PC case becomes

#(0) 1O,
#(0,)+ H(0))

2

A-£(0,,0,) -

-4

j 3

where 4, (4; respectively) is the vector of values of u on O, (O; respectively). Thus,

Equation 3 is a special case of Equation 6.

By Proposition 1, 4, satisfies x4(0,)- 4, = _[ gdu.Thus, 4, = L Jga’,u is the
‘ 0 :u(On 0, .
1

average value of g on O,. Similarly, B = - | gdu is the average value
(0, + ,U(Oj) o,\_J,-oj
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of g on O, UO,. In this case, part (c) of Proposition 1 simply shows how to obtain the
average of g on O, L O, from the average ofg on O, and O;.

As an example, we include here the single channel PA case in dimension 2 for
comparison and to emphasize that Equation 6 is indeed necessary beyond the PC setting
and that Equation 3 applies only in the PC setting.

2.2. SINGLE-CHANNEL PIECEWISE AFFINE APPROXIMATIONS (d =2)

If d=2, then Q is a rectangle in R?. Suppose g:Q—> R and u is a PA

approximation to g. Then

anl

un(x>y)=anl '1+an2 .x+an3'y=[1 x y] anZ =F(x’y)An'
’ an3

Therefore, f,(x,y)=1, a constant function, f,(x,y)=x,and fi(x,y)=y, (x,y)€ Q.
The matrix F(x,y)=[1 x y]isalx 3 matrix, and

1 1 x y
FT(x,y)F(x,y)=|x[[1 x y]=|x x* xy|, (x,y) €Q.
y y » ¥ '
1 x vy
M, = jF (x,)F(x,y)dxdy = J x x* xy dxdy
“ly » ¥

10
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I i
Jldxdy jxdxdy jydxdy

= dexdy jx dxdy nydxdy

»

jy dxdy ny dxdy Jyz dxdy
0,

L O, 0,

so M, is no longer a multiple of the identity matrix.

n

J1-g(x,y) dxdy
O,
=JFT(x,y)g(x,y)dxdy= Jx-g(x,y) dxdy |.

0, A
Jy - 8(x,y) dxdy

0O,

nl

The coefficient vector 4, =|a,, | satisfies the linear system M, 4, =V,.

anB

n

Since the matrices M, and H, are no longer multiples of the identity matrix,

Equation 3 no longer applies and one must use the general merging criterion in Equation
6. (See Reference 6 for more details on the multichannel PA setting.)

3. TILING PROBLEM

When implementing the RG method, the question of which pair of adjacent regions
0,,0, should be considered first arises. What procedure should be used to select the

sequence of pairs of adjacent regions? In our initial implementation we decided to merge
a pair of regions O,,0; with maximal criterion M, . This procedure leads to a steepest-

descent type of procedure because the maximal criterion M, represents the largest

11
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decrease in E when two regions are merged. We discovered, however, that this approach
often leads to regions that grow too large and with too many small neighboring regions.
When regions become such that they have too many neighbors, the procedure slows down
considerably. We concluded that, at least initially, one should avoid large regions with
too many small neighbors. We opted to use a seeding procedure at the initial stages of the
two-dimensional merging process. The seeding procedure (tiling) is described next.

The RG method starts with an initial segmentation of Q. In the discrete PC case, the
initial segmentation can be chosen to be the trivial segmentation, that is, one in which
each O, consists of one single pixel (PC case only). Then each pixel has four neighbors:
up, down, right, and left neighbor. Note that the diagonal neighbors of a pixel x share a
boundary with x (a corner) of zero length. Consequently,' these neighbors will never
merge with x, because the merging criterion in this case is never positive (see Equation
6).

When a pixel x merges with its four neighbors, it forms a cross-like region (Figure 1)
which we will call a first level tile (FL-tile). The pixel x is the center of the tile.

FIGURE 1. First-Level Tiles.
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3.1 ITERATED TILING PROBLEM IN TWO DIMENSIONS

The tiling problem for Q < R* can be stated as follows. (Note that QO may be
replaced by R>.)

1. Determine the centers of a collection of FL-tiles so that the collection of FL-tiles
cover Q and do not overlap (i.e., intersect only at the boundary). Such a covering will be
called a first-level tiling of Q.

2. Determine the centers of a collection of the resulting FL-tiles so that the second-
level tiles (SL-tiles), that is, a FL-tile merged with its adjacent FL-tile neighbors, cover
Q and do not overlap. Such a covering will be called a second-level tiling of Q.

3. Determine how to iterate the tiling procedure implied by 1 and 2 to obtain higher-
level tilings.

3.2 ITERATED TILING PROBLEM SOLUTION IN TWO DIMENSIONS

1. First-level tiling (discrete case).
‘Let Q = { (i,j)-pixels: 0<i<r,and 0 <j<s}.Let

3i(mod5) fori=0,1234
a, = .
a; s foriz5s

then, the centers for the FL-tiles can be chosen to be
C ={c, =(,a,+5k):ieZ,keZ}NnQ.
Note that the centers in C, are distributed with density 1/5 per unit area and the area

of a FL-tile is 5. Trivially one can check that FL-tiles with centers in C, cover Q (except

for edges) and do not overlap.
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2. Second-level tiling.

The centers C, for the second level tiling must be chosen from the set C,. There are

several choices. They must be spaced a distance five in both directions. For example:
C,={c, =Gi5k):ieZ,keZ}nQ.

Remark 3.1. The process iterates to higher-level tiles. The centers in C, form a square
lattice just as the centers of the initial pixels do. The second-level tiles are square like
(Figure 2). The third level tiles will form a cross-like region (Figure 3). Thus, the process
clearly iterates.

FIGURE 2. Second-Level Tiles.

14
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FIGURE 3. Third Level Tiles.

15
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Remark 3.2. The goal of the tiling problem is to prevent regions from having too many
small neighbors. In the tiling process previously described, the regions maintain four, and
only four, neighbors throughout the process. Furthermore, the area of FL-tiles is 5, the
SL-tiles have area 25, and the k-level tiles have area 5*. Thus, the tile area grows
exponentially while the number of neighbors remains constant. This is the case for the
worst-case images, which ironically for the RG method are the blank images or
homogéneous images (images with constant g) that force the method to merge all the
initial regions into one. For non-blank images the iterated tiling process will be corrupted
when lower-level tiles do not get merged into higher-level tiles because they are not
supposed to (merging criterion < 0). After a few iterations of the tiling process our
algorithm starts merging regions with maximal merging criterion (steepest descent) to

arrive at a minimum of E .

4. PROGRAM STRUCTURE GENERAL DESCRIPTION

The RG method arrives at a segmented image by merging adjacent regions with a
positive merging criterion (Equation 6) until a minimum of the simplified M&Sh
functional (Equation 2) is reached. To evaluate Equation 6, we need the coefficient
vectors 4, and 4,, the two matrices M, and M;, and the length of the common

boundary £(J(0;,0,)). After merging two regions O and O;, we also need the two
vectors ¥, and ¥V, in order to compute the new coefficient vector

i

A; =(M; + Mj)'l (V, +V,) for the approximation to g on O,v0,;.

All the versions of the RG algorithm that we have implemented keep track of several
lists of objects that are associated with each region. Each region k is associated with five
lists and three objects. The three objects are the coefficient vector 4, , the vector ¥, and
the matrix M, associated with region £.

The five lists associated with region k are

1. A list of neighbors for region k&

16
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2. A list with the lengths of the common boundaries between region k and each of its
neighbors

3. A list with the values of the merging criterion between region k and each of its
neighbors

4. A list with the boundary pixel labels between region & and each of its neighbors

5. A list of the pixels in region k

These lists and objects must be updated every time two regions merge. Updating lists
1, 4, and 5 involves taking the union of two sets. The pixels in the new region formed are
simply the union of the pixels in the two merged regions. This union is implemented by
the function merge_pix and is discussed in more detail in subsequent paragraphs. The list
of boundary pixels of the new region is the union of the boundary pixels of the two
merged regions after deleting, from both lists, the pixels belonging to the common
boundary. This operation is implemented by the function New_Boundary. When two
regions merge, say region A and region B, the list of neighbors for the new region is the
union of the two lists of neighbors (list A and list B) after deleting the following:

1. B from list A
2. A from list B
3. All common neighbors from list B

The operations 1, 2, and 3 for updating the list of neighbors for the new region are
implemented by the function mrg_N_B and the functions that mrg_N_B calls. The new
region keeps the label A and the new list is list A. Region B is said to have been absorbed
by region A.

Every neighbor of a region B lists B as one of its neighbors. When a region B gets
absorbed by region A, B no longer exists and must be deleted from the lists of every one
of its neighbors and substituted by A, unless the neighbor is a neighbor of both A and B,
in which case we delete only B from its list. This operation is performed by the function
replace B_by_A. This function also updates the merging criterion because the area of
the neighbor A now includes the area of B as well. As the different lists of neighbors are
updated, so are the merging criteria. The common neighbors are dealt with by mrg_N_B.
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The length of the boundary between two regions changes only when the two regions
A and B being merged have a common neighbor C. In this case, if A absorbs B, then the
Jength of the boundary between the new A and C is simply the sum of the lengths of
boundary between C and the old A and between C and B. Updating the boundary lengths
is also taken care of by the function mrg_N_B.

The coefficient vectors A and V, the matrix M and the preceding lists 1 through 4 are
also updated in mrg_N_B and the functions that mrg_N_B calls.

Figure 4 shows the structure of the PC-RG program for two-dimensional imagery.
The program, called Tile_Max_Reg_Grow_B, is divided into four parts.

In Part 1, the five lists and the three objects associated with each initial region are
defined for every region in the initial segmentation. In the PC case the initial
segmentation is chosen to be the trivial segmentation where each region consists of a

~single pixel. Thus, for an nxm-image, there are nm initial regions in the PC case. Each
region is labeled with an integer k; 1 <k < nm. The function initialize defines the initial
pixels in each region. The function NGB_PNTR _init_B defines the initial lists of
neighbors, common boundary lengths, merging criteria, boundary pixels, and the initial
A,,V,,and M, foreachregionke {12, ,Am} .

In Part II of Tile Max_Reg_Grow_B, the centers of the first four levels of tiles are
defined by the function tile and the two functions that it calls. The function
sweep_reg_Tile_B sweeps through the centers of the tiles in order to merge them with
their neighbors according to the merging criterion up to the highest level of tiles chosen.

Part 111 finishes the merging of regions by selecting pairs of regions with maximal
merging criterion (steepest descent) for merging until all the remaining criteria lie below
the chosen non-negative threshold. The resulting sets of regions, boundaries, and

coefficients constitute the segmentation of the original image.

In Part IV, the piecewise approximation to the original image is computed and the

information is assembled properly for display. It is possible to display, for example,

18




NAWCWD TP 8525

individual regions or individual boundaries if desired, as well as the complete set of
boundaries and the complete piecewise approximation to the image.

We note here that Part II can be skipped if one prefers a pure steepest-descent
procedure for minimizing Equation 2. This may lead to a different local minimum for

Equation 2. Part II was introduced to speed up the algorithm.

This finishes the general description of the structure of our programs. Next, we go
into a detailed description of each function involved.
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Tile Max_Reg_Grow_B

initialize
PartI 3 - Im_ Vect_1
‘ NGB_PNTR_init_ B — - -
- -~ fetch_ ADD_NGB
tile R »{Sweep_ array_New
Sweep_ array_4
Elim_ Pnt
Par -
art IT fetch_ ADD_NGB Criterion Criterion
sweep_reg_Tile B — mrg_N_B —» ¢ Elim_and_Update —» ¢ Update_ criterion
merge_ pix close_ranks replace_B_by_A
New_ Boundary — {close_ ranks
'max__ criterion
Elim_ Pnt
Criterion Criterion
mrg N B - Elim_and_ Update — { Update_ criterion
Part III | ' close_ ranks replace_B_by A
New_ Boundary —»close_ranks
merge_ pix
cls_rnks
| max_ criterion

( Display_ Reg_ Pix
Vect_to_Img_1
Display_ith_reg

Part IV Yect_ to_Img 1

Display_ Boundary .

Vect_to_Img_1

Display_ith_ Bndry

| Vect_to_Img 1

FIGURE 4. The Piecewise Constant Matlab Program.
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S. MATLAB IMPLEMENTATION OF PC-RG METHOD
5.1 PART I. INITIALIZING

In Part I we describe the functions initialize, NGB_PNTR_init_B, Im_Vect_1, and
fetch_ ADD_NGB.

initialize

Im_ Vect 1
fetch  ADD_ NGB

A

NGB_PNTR_init B - {

5.1.1 Function initialize

The input to this function is nm. The outputs are the six arrays: Start, End, Reg Pix,
P S, Strt S, and End_S.

This simple function initializes six arrays. To understand the role of these arrays, we

should explain here how we have implemented the operation of union of two disjoint sets
in Matlab.

Suppose we have four disjoint sets labeled A, B, C, D, and suppose the labels are
positive integers, say 4 =1, B =2, C =3, and D = 4. Suppose the elements of each set
are numbers also, say A4 ={a,,a,,a,}, B={b,b,,b,}, C={c,c,,c;,c,}, and
D={d,,d,,d,;,d,}. To implement the possible unions of these four sets (e.g. AU C or

Bu D) we use four arrays. The first array contains the elements of all four sets; call it
Elements:

Elements =[a,,a,,a,,b,,b,,b;,c,,¢,,¢5,¢,,d,,d,,d;,d,].
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The second array has four elements (the number of sets) and indicates where, in the

array Elements, the members of each set start; call it Start:
Start=[1,4,7,11].

So, the elements of set A4 start at Start( A) = Start(1) = 1, the elements of set B start
at Start( B) = Start(2) = 4, etc. Thus, the elements of Start are pointers to the beginning

of the list of elements of each set contained in the array Elements.
The third array indicates where, in Elements, the members of each set end; call it End:
End=1[3,6,10,14].
So, the elements of the set C = 3 start at Start(C) =7 and end at End(C) = 10.

The fourth array is a pointer to the next element; call it Pointer. In this example, we

have
Pointer=[2,3,0,5,6,0,8,9,10,0,12,13,14,0 ].

The elements of a set can be retrieved from the array Elements using the two arrays

Start and Pointer. For example, the elements of set B =2 are

Elements(Start(2)) = Elements(4) = b,
Elements(Pointer(Start(2))) = Elements(Pointer(4)) = Elements(5) = b,
Elements(Pointer(Pointer(Start(2)))) = Elements(Pointer(5)) = b,

Note that Pointer(6) = 0 and the zero indicates the end of the list for set B. Thus, the idea
is to iterate along the array Pointer, starting at Start( B), until the value zero is reached:
Start( B), Pointer(Start( B)), Pointer(Pointer(Start( B))), ..., 0. Also note that for any set
X, Start(X) is not only the index of Elements corresponding to the first element of X, but
is also the index for starting the iteration along the array Pointer to retrieve the elements
of the set X.
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In general, the arrays Start, End, and Pointer are deﬁned so that Start(X) is the index
of the first element of X, Pointer(Start(X)) is the index of the second element of X,
Pointer(Pointer(Start(X))) is the third, and so on,

Pointer(End(X)) =0 for all sets X 5.1
and End(X) is the index of the last element of X. When a set X disappears, we set Start(X)

= ( to indicate that it no longer plays a role. One can go through the elements of a set or a
list of elements using the following Matlab while loop.

% The elements of set C

x=Start(C), % Pointer to the first element in the list C or set C
while x ~= 0 % If Start(C) is not zero, the set C is still viable
% If x is not zero, there is another element in the set C
Elements(x) % An element of set C
x=Pointer(x); % Advance the pointer to the index of the next element
end % When x = 0 the list has ended

The union of two sets, that is, an assignment of the form 4= 40U C, for example,

can be implemented by concatenating the list for set 4 with the list for set C, as follows.

1. Pointer(End( A)) = Start(C)
2. End(A)=End(C)
3. Start(C)=0

Statement 1 concatenates the two lists. Before Statement 1, Pointer(End(A)) = 0
indicates the end of list 4. By setting Pointer(End( A)) = Start(C), the list continues
through the elements in the list C. Statement 2 moves the end of list A4 to the end of list
C. Start(C) = 0 in Statement 3, is for bookkeeping purposes; it indicates that the set C

has been merged with another set and no longer exists.
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In the two-dimensional setting, the image is an array of dimensions nxm. The
integers n and m denote the dimensions of the image throughout the paper and the

programs.

As mentioned in the preceding paragraphs, the function initialize initializes six
arrays. The first three arrays (Reg_Pix, Start, and End) are used to keep track of the pixels
belonging to each region and to implement the unions of regions as the merging of
regions proceeds. Since the image is 7 x m, there are nm pixels. The pixels are labeled 1
through nm (Figure 5), starting with the first row of pixels. Pixel (i, j) receives the label
k=G-1)m+j. ‘

1 2 3 evom
m+1 m+2 m+3 cev 2m
2m+1 2m+2 2m+3 «+ 3m

| (n—-Dm+1 (n-Dm+2 (n-Dm+3 -+ nm,

FIGURE 5. Pixel Labels.

In the PC case, the initial segmentation is the trivial segmentation. Each region
consists of one pixel; hence, there are nm regions. The regions are labeled 1 through nm

as the pixels, so that Region(i)) ={i},i=1,2,...,nm.

The arrays Start and End in initialize, as discussed previously, indicate where the

pixels of each region start and end. Since each region has one element,
Start=End=1[1,2,3,...,nm].

The array Reg Pix, the pointer associated with the region labels and pixel labels, is a
1 x nm array and, according to Equation 5.1 and the definition of End, Reg Pix = [0; 0,..
., 0]. Moreover, the array Reg_Pix also plays the role of the array Elements. In this
setting the array Elements is [1, 2, 3, . . . , nm], so it is not necessary 1o explicitly define
it. To keep track of the pixels in each region, we need only Start, End, and Reg_Pix.
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The other three arrays defined in the function initialize are called P_S, Strt_S, and
End_S. These are used to keep track of the non-zero entries in the array Start. A zero
entry in Start indicates that the region corresponding to that entry has been absorbed by
(merged with) another region and will no longer be considered. Thus, by keeping track of
the non-zero entries in Start one can search efficiently through the remaining regions. The
érray P_S'is the pointer, Strt_S and End_S are the start- and end-arrays associated with

the pointer P_S. Thus, initially Strt S =1, End S=nm,and P_S=1[2,3,4,...,nm,0}.
" The function els_rnks updates these three arrays so that P_S will skip over the zero

entries in Start.

5.1.2 Function NGB_PNTR init B

‘The function NGB_PNTR _init_B, one of the main functions in our implementation

of the RG method, initializes 11 arrays:

The array M, a 1 x (nm) array

The array V, a ¢ x (nm) array

The array C, a ¢ x(nm) array, where c is the number of channels
The array Reg N, a 3 x (4nm) array

The array Start N, a 1 x (nm) array

The array End N, a 1 x (nm) array

The array Pir_N, a 1 x (4nm) array

The array Reg B, a 1 x (4nm) array

O 0N R W N

The array Start B, a 1 x (nm) array
10. The array End B, a 1 x (nm) array
11. The array Prt_B, a 1 x (4nm) array

3
With each region £, a function u, = Za,”. f; approximates the image g on O,. The
i=]

coefficient vector 4, =[a,, a,, - a, )" € R’ satisfies M, 4, =V, (see Proposition I).
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In the PC setting, the matrix M, = u(0,)-I, where u(O,) denotes the area of
region O,. The 1x(nm) array M contains the areas of all the initial regions which are all

equal to one.

In the discrete case, when O, is one pixel, say pixel k, the vector V, = jF "gdu
0,

becomes V, = ZFT(i)g(i) = Zg(i) = g(k) and since M, =1, A4, =V, = g(k), for all

ieO, ieOy
k. Here, the ¢ x nm array C contains all the initial coefficients 4, = g(k) (1 <k < nm),
where ¢ is the number of channels. Thus, C = ¥V and V is a ¢ x nm array with V(’,k) =

g(pixel k).

The function Img_Vect_1 transforms a 1-channel, (n x m)-image into a (1 x nm) array
V. For multichannel data we use Img_Vect_1 on each channel to transform a c-channel,

(n x m)-image into a (¢ x nm) array V as follows.

For multichannel data use
for i=1:ch
V(i :)=Img Vect 1(n,m, CHANNEL(i));
end

The arrays Start N, End N, and Ptr_N are, respectively, the start, end, and pointer
arrays associated with the 3 x (4nm) array Reg N, which contains the neighbors,
boundary lengths, and merging criteria for each region k. This array plays the role of the

array Elements discussed as an example in the description of the function initialize.

Every pixel k (except the pixels at the edges of the image) has four neighboring
pixels: an up, down, left, and right neighbor (see Section 3). Each neighbor has a label in
the set {1,2,3,---,nm} . The 3 x 4nm array Reg_ N contains, in the first row, the labels of
the neighbors of each pixel. The label 0 is given to neighbors that do not exist. The
neighbors are labeled counterclockwise starting with the upper neighbor: up, left, down,
and right. So, for example (see Figure 5), the neighbors of pixel 1 are 0, 0, m+1, 2. The
neighbors of pixel m+2 are 2, m+1, 2m+2, m+3. The neighbors are listed, four per pixel,
along the first row of Reg N in the same order as the pixel labels.
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On the second row of Reg N and in the same order are listed the lengths of the
common boundaries between a region and its four neighbors multiplied by lambda (see
Equation 3). Since all the regions consist of one pixel initially, all the lengths equal one.
Along the third row of Reg N, and in the same order as the neighbors, are listed the
values of the merging criteria between a region k and its four neighbors. The initial

merging criteria in the PC-setting are
lambda — %[C (k) — C(neighbor)]"[C(k) — C(neighbor)], (5.2)

where C(k) are column vectors of coefficients (corresponding to the coefficient vectors
A, of Equations 3 and 6) of dimension ¢ (number of channels) associated with region k.
Since the Expression 5.2 involves an inner product of c-dimension vectors, the Matlab
statement that implements it is already multichannel. However, one must use C(,k) and
C(:,neighbor). Here, we call the function fetch ADD_NGB to fetch the neighbors of
each region £. It is interesting that the function fetch_ADD_NGB uses Start N, Ptr N,
and Reg N as inputs, and these arrays are being defined here in the calling function. It
works. The parts that fetch_ ADD_NGB needs are defined before it is called.

Since each region has four neighbors, the list of neighbors for region £ ends at
Reg N(1, 4k) and starts at Reg N(I1, 4k-3) (I <k < nm). Thus, End N(k) = 4k and
Start_N(k) = 4k-3 (I <k <nm). The pointer Ptr N is defined as

Ptr N=[2,3,4,0,6,7,8,0,10,11,12,0,...,4nm-2,4nm -1, 4nm , 0].

The arrays Start B, End_B, and Ptr_B are, respectively, the start, end, and pointer
arrays associated with the 1 x (4nm) array Reg B, which contains the labels of the
boundaries associated with each region k. This array plays the role of the array Elements

discussed as an example in the description of the function initialize.
Between any two adjacent pixels we consider the existence of a virtual boundary

(virtual in the sense that there is no pixel corresponding to the boundary) and divide the
boundaries into two classes: vertical and horizontal. The vertical boundaries are labeled 1
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through nm. The horizontal boundaries are labeled nm + 1 through 2nm. The number of
boundaries is fewer than the labels because the boundaries of the image are not

considered boundaries of pixels. Thus, not all the labels are used.

Except for the pixels at the edges of the image, every pixel k has four boundaries: an
upper boundary labeled (nm+k-m), a left boundary labeled (k-1), a down boundary
labeled (nm+k), and a right boundary labeled k. The nonexisting boundaries are labeled 0.
We note here that one can label the horizontal virtual boundaries 1 through nm as well.
Different labels are not necessary (see the remark in Section 5.4.4). '

Reg B is a 1x(4nm) array with the labels of the four boundaries of each pixel in the
same order as the neighbors. Thus, Start B = Start N, End B = End_N, and Ptr_B =
Pir N.

5.1.3 Function Img Vect 1
This function transforms a single-channel nxm image into a (1 x nm) vector V.
V{1, -D)m+ j)=1Image(i,j),1<i<n,1<j<m.

In the multichannel setting, this function must be modified to produce a (¢ x nm)
vector ¥, where ¢ is the number of channels or else the function is used on each channel

one at a time.

5.1.4 Function fetch ADD NGB

This function retrieves the list of addresses of the neighbors of a region 4 and the list
of neighbors, boundary lengths, and merging criteria using the arrays Start_N, Ptr_N, and
~ Reg N. The inputs to the function are 4, Start_N, Ptr_N, and Reg_N. The function returns
four arrays: an array Addresses with the addresses of the neighbors of region 4, an array
Neighbs with the labels of the non zero neighbors of A, and the arrays Lengths and Criter

with the lengths of boundaries and merging criteria, respectively.
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5.2 PART II. TILING

. Sweep_ array_ New
tile —> - -
Sweep_ array_4
Elim_ Pnt
fotch ADD NG Criterion Criterion
) i etch_ADD_NGB Elim_and_ Update —> § Update_ criterion
sweep_reg_Tile_B — mrg_N_ B = close_ranks replace B_by A
merge_ pix
| New_ Boundary — {close_ ranks

Part IT of the PC-RG program in two dimensions implements the‘tiling described in
Section 3, which was introduced to speed up the algorithm. Here we describe the
functions tile, Sweep_array_New, Sweep_array 4, and sweep_reg_Tile_B. The
function fetch_ ADD_NGB was described in Part I, and the rest of the functions are
described in Part II1.

5.2.1 Functions tile, Sweep_array_New, and Sweep_array 4

The function tile simply calls the two functions Sweep array New and
Sweep_array_4 to create two arrays, 77 and 72. These arrays contain the centers of the
levels 1, 2, 3, and 4 tiles (see Section 3). This function has three inputs: the dimensions of
the image » and m and level € {1, 2, 3, 4}, which is used to select the highest level of
tiles desired. If level < 2, then only 77 is created by Sweep_array_New. If level > 2, then
Sweep_array_4 creates 72. The centers of the first two-level tiles are defined in T7 (the
first level in row 1 and the second level in row 2). The centers of the third- and fourth-
level tiles are in 72 (the third level in row 1 and the forth level in row 2). The outputs of
this function are 77 and 72.
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5.2.2 Function sweep_reg Tile B

The inputs to this function are n, m, M, V.C T.Tl, T2 level, S NJE N, P N, RN, S,
E, RP,S B,E B, P B, and R_B.

This function, which forms the tiles, goes through the centers of the various-level tiles
in T1 and T2 according to the level of tiling selected (input /evel) and merges the center
of a tile with its adjacent neighbors (to form the tile), if the merging criterion exceeds the
chosen threshold T. The steps are as follows.

A center is selected and labeled A4:

A=T(Lk) forlevell,k=1,2,3,...0r
A=T2k forlevel2,k=1,2,3,...,0r
A=T@3,k) forlevel3,k=1,2,3,...0r
A=T(4k) forleveld, k=1,2,3,....

If A # 0, then sweep_reg_Tile_B calls the function fetch_ADD_NGB (described in
Section 5.1) to get the neighbors of 4. Then it loops through the list of neighbors,
checking if the merging criterion exceeds the chosen threshold T for merging, and if it
does, it calls the function mrg_N_B to update the lists and objects associated with 4 and
its neighbors. Then it calls the function merge_pix to implement the union of the pixels
of A and the neighbor being absorbed. It returns the updated arrays M, V, C,S N EN,
PNRNSERPSBEBPBRB

The function mrg N_B and the functions it calls and the function merge _pix are
discussed in Part I1I.
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5.3 PART III. STEEPEST DESCENT

Part III implements the Steepest Descent procedure for minimizing Equation 2.

(max_ criterion
mrg N B
Elim Pnt

Criterion
Criterion

4 merge_pix —><Elim_and_ Update —> < Update_criterion
replace_B_by A
close_ranks

| New_Boundary — {close_ranks
cls_rnks :

| max_ criterion )

5.3.1 Function max_criterion

The inputs to max_criterion are Start S, Ptr_S, Start_N, Ptr_N, and Reg N. The
outputs are Region, Neighbor, and MAX_Criter.

This function uses a double while loop to search through the remaining regions (using
Start S and Ptr_S discussed in Section 5.1.1 as Strt_S and P_S) and through each
remaining neighbor of each region (using Start_N and Ptr_N ) in order to find the pair of
remaining neighboring regions with maximal criterion. The function returns the selected

region-neighbor pair and the value of the maximal criterion.
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'5.3.2 Function mrg_N_B

This function implements most of the operations involved when two regions merge.
The inputs are 4, B, M, V, C, Start_N, End_N, Ptr_N, Reg_N, Start_B, End B, Ptr_B, and
Reg B. The two regions to be merged are 4 and B. The new region formed keeps the
Jabel A; that is, 4 will absorb B. Both 4 and B are integers between 1 and nm.

The arrays M, V, and C contain, respectively, the matrix M, the vector ¥, and the
vector of coefficients C, (see Proposition 1; we use C, instead of 4,) associated with
every region k (1 < k < nm). In the 1-channel setting, these three objects are scalars.
Thus, M, V, and C are 1 x nm vectors. In Part 1 of mrg_N_B the values of these scalars
are computed for the new region. The new region keeps the label A. The update of these

objects in the single-channel case reads as follows:

M(4) = M(A)+ M(B), ascalar
V() = V(A4) + V(B), ascalar
C(A) = V(4)/M(4), ascalar

In the multichannel case (¢ channels), the matrices M, are simply the (c x ¢)-identity

matrix multiplied by the area of the region. Therefore, they can be represented by a scalar -
as in the 1-channel case. The vectors ¥, and C, have dimension c. Thus, ¥ and C are (¢

x mm) matrices, where V(:, k) and C( ., k) are column vectors corresponding to region

k. The update of these objects in the multichannel case reads as follows:

M(4) = M(A)+ M(B), ascalar
V(:,A)=V(:,A)+V(:,B), acolumn vector of dimension ¢
C(:,A4)=C(:,A)/M(A4), acolumn vector of dimension c

Note that no matrix inversion is required. This modification is the only one needed in
mrg_N_B to implement the multichannel PC algorithm.

In Parts 2 and 3 of mrg_N_B, the array Reg N is updated. As mentioned in Section

5.1.2, Reg Nis a 3 x 4nm array. The first row of Reg_ N contains the lists of neighbors of

every region; the second row contains the lists of common boundary lengths between
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every region and its neighbors. The third row contains the lists of merging criteria
between every region and its neighbors. When talking about a list of neighbors, lengths or
criteria of a given region 4, we refer to it as list(4) for short. It will be clear from the
context what kind of list it refers to. The length of the common boundary between two
regions, A and B say, is referred to by length(4,B). Similarly, the merging criterion
between two regions, 4 and B say, is referred to by criterion(4,B).

In Part 2, a double while loop is used to search through list(4) and list(B) for a
common neighbor CN. When a common neighbor CN is found, it is deleted from list(B)
to avoid duplication of CN in list(4 U B) when we merge the two lists. Next, a call to the
function Elim_pnt (described in the following text) eliminates B from list(CN), for B has
been absorbed and no longer exists. Since CN is a common neighbor, 4 does not need to
be added to list(CN); however, since CN is a neighbor common to 4 and B, length(4,CN)
has increased and it will have to be updated in list(4) and list(CN). After the merger of 4
and B, we have

length(4, CN) = length(4, CN) + length(B, CN).

The function Elim_Pnt also returns a pointer to 4 in list(CN) in order to update
length(4,CN) in list(CN). Once this pointer is available, length(4,CN) in list(CN) is
updated, after updating length(4,CN) in list(4).

Since length(4,CN) has increased and the area of 4 has increased, the criterion(4,CN)
has changed. A call to the function Criterion (described in a subsequent paragraph)
updates criterion(4,CN) in list(4). Then, using the pointer to 4 in list(CN) previously
provided by Elim_Pnt, we update criterion(4,CN) in list(CN). This takes care of the
common neighbors. We suspect that it is not necessary to update criterion(4,CN) in
list(4) and list(CN) here, for it will probably be taken care of in Part 3, where we update
the criteria between 4 and the rest of its neighbors that were not common to both 4 and B.

As mentioned in the preceding text, Part 3 takes care of the list-updating for those
neighbors of 4 and B that were not common neighbors. Part 3 also updates the lists of the
members of list(B). This is done by a call to the function Elim_and_Update and is
explained subsequently in the déscription of this function.
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Once all the lists of have been updated and the lists of neighbors of 4 and B are ready
to be merged, in Part 4 of mrg N_B the lists of the neighbors of 4 and B are
concatenated as described in Section 5.1.1. Next, a call to the function close_ranks
adjusts the pointer Ptr_N to skip over the addresses that correspond to regions in list(4)
that have been absorbed and adjusts Start_N and End_N. Finally, the boundary of the new
region is adjusted with a call to the function New_Boundary. These last two functions

are also subsequently described.

5.3.2.1 Function Elim_Pnt. The inputs to the function Elim_Pnt are C, B, A,
Start N, Ptr_N, and Reg_N. Using Start_N, Ptr_N, Reg_N, and the searching technique
described in Section 5.1.1, this function searches through the list of neighbors of region C
looking for regions B and 4. When it finds B, it eliminates B from the list by setting the
entry to zero; and when it finds 4, it saves the pointer to 4 and returns it to the calling
function (pnt_to_A_inC).

5.3.2.2 Function Criterion. The function Criterion has inputs 4, C, pointer, M,
Cocff, and Reg N. The input pointer is a pointer to region C in the list of neighbors
list(4) that resides in Reg N. After computingl the new merging criterion between regions
A and C, it places it in the list of criteria in list(4) using pointer and Reg N(3,:), namely,
Reg N(3,pointer). Since Coeff, the input of coefficients for the piecewise approximation
can be a column vector, the function Criterion is already multichannel. The function

returns the updated array Reg N.

5.3.2.3 Function Elim_and_Update. Before merging regions 4 and B, this function
updates list(4), the lists of the neighbors of 4, list(B), and the lists of the neighbors of B

as follows.

Updating list(4) and the lists of the neighbors of 4,

1. Eliminates B as neighbor from the list(4).

2. Updates criterion(4,C) for every neighbor C in list(4), except neighbor B, by
calling the function Criterion.

3. Updates criterion(4,C) in list(C) for every neighbor C in list(A), except neighbor B,

by calling the function Update_criterion.
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Updating list(B) and the lists of the neighbors of B,

1. Eliminates 4 as neighbor from the list(B).

2. Updates criterion(4,C) for every neighbor C in list(B), except neighbor 4, by
calling the function Criterion.

3. Replaces B by 4 in list(C) for all the neighbors C of B in list(B) except neighbor 4,
and updates criterion(4,C) in list(C) by calling the function replace_B_by_A.

Note that if C is a common neighbor of 4 and B, then B will have been replaced by 0
at the common neighbor stage (i.e., function Elim_Pnt). Thus, 4 will not be duplicated in
the list(C).

5.3.2.3.1 Function Update_criterion. The inputs to this function are C, 4, M, Coeff,
Start N, Ptr_N, and Reg N. Using Start N, Pir_N, Reg N, and the searching technique

“described in Section 5.1.1, the function searches through the list of neighbors of region C
- looking for region 4. When it finds 4 ( Reg_N(1, x) = 4 ), it updates the criterion(C,4) in

the array Reg N, namely, Reg N(3,x) = criterion(C,A4), by calling the function Criterion.

5.3.2.3.2 Function replace_B_by A. The inputs to this function are 4, B, C, C’be]f,
M, Start N, Ptr_N, and Reg N. Using Start N, Ptr N, Reg N, and the searching
technique described in Section 5.1.1, the function searches through the list of neighbors
of region C looking for region B. When it finds B, it replaces B by 4 and updates the
cr'iterion(C,A) in list(C) contained in the array Reg N by calling the function Criterion.

5.3.2.4 Function close_ranks. The inputs to function close_ranks are 4, Start N,
End N, Ptr_N, and Reg N. This function modifies Start_N(4), End _N(A), and the part of
the array Ptr_N that corresponds to the list of neighbors of 4. This is done in order to skip
over the addresses in the pointer Ptr N that correspond to the zeros in the part of the
array Reg N(1, : ) that corresponds to list(4) so that regions that no longer exist (the
zeros) are no longer visited when searching the lists corresponding to region 4. This
function is called every time a region 4 merges with another region B. When a merger
occurs, the list of neighbors of the new region 4 becomes the union of neighbors of 4 and
B after deleting B from list(4), deleting 4 from list(B) and any common neighbors from

list(B) to avoid duplications. Thus, at least two new zero entries exist in list(4) and must
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be skipped over by Ptr_N. Other zeros may exist in list(4) if a neighbor of 4 has merged
with a region that is also a neighbor of 4 (see Elim_Pnt).

The first while loop in close_ranks modifies Start N(4), End_N(4), and Ptr_N to
skip over the zeros that might be at the beginning of list(4) in Reg_N(1, : ). The second
while loop in close_ranks modifies End _N(4), and Ptr_N to skip over the zeros that
might be in list(4) after some non-zero entries, interleaved between non-zero entries
* and/or at the end of list(4).

5.3.2.5 Function New_Boundary. The inputs to New_Boundary are 4, B, Start B,
End B, Ptr_B, and Reg_B. This function forms the boundary of the union of two regions
A and B after the merger of 4 and B. There are two steps: (1) delete points that are
common to both boundaries from the two lists of boundary points list(4) and list(B), and
(2) concatenate the two lists and close ranks (skip over zero entries in Reg_B).

Step 1. Using a double while loop the function searches through list(4) and list(B) in
Reg B for common boundary points, deleting them by setting the corresponding entries
in Reg B to zero.

Step 2. The lists are concatenated using the following three statements as discussed in
Section 5.1.1.

Ptr_B(End_B(A4)) = Start_B(B)
End _B(4) = End_B(B)
Start_B(B) = 0.

A call to the function close_ranks modifies Start_B, End_B and the part of the array
Ptr_B that corresponds to the list of new boundary points of 4, to skip over the addresses
in Pir_B that correspond to zeros in the array Reg_B that resulted from the elimination of

common boundary points.
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5.3.3 Function merge_pix

The inputs to merge_pix are 4, B, Start, End, and Pointer. This function simply
concatenates the list of pixels of region 4 with the list of pixels of region B as discussed
in Section 5.1.1 and Step 2 in the function New_Boundary.

5.3.4 Function cls_rnks

The inputs to cls_rnks are Strt S, End S, P_S, and Start. This function has the same
structure and serves the same purpose (skip over zeros in Starf) as the function
close_ranks previously described. It modifies Strt_S, End_S, and P_S in order to skip
over the zeros in the array Start.

When a merger occurs, the list of pixels of the new region 4 becomes the union of the
pixels of 4 and the pixels of B and the array Start acquires a new zero at Start(B). This
function is called only after every multiple of » mergers has occurred.
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5.4 PART IV. COLLECTING REGIONS AND BOUNDARIES AND THE PC-
SEGMENTED IMAGE

[ Display Reg_Pix
Vect_to_Img 1
Display_ith_reg
Vect_to_Img_1

Display Boundary
Vect_to_Img 1

Display_ith Bndry

| Vect_to_Img_1

5.4.1 Function Display Reg Pix

The inputs to the function Display_Reg_Pix are Start_S, Ptr_S, Start, Reg_Pix, nm,
and C. The outputs are Regns, Segmentation, and Final_Regions.

The arrays Start S and Ptr_S are associated with the labels of the remaining regions
(start and pointer). Start_S is the label of the first remaining region. Ptr_S is the pointer to
subsequent regions. Using Start S and Ptr_S, this function collects the labels of all the
regions in the final segmentation and puts them in the array Final_Regions. The size of
this array is then the number of regions left in the segmentation obtained.

The arrays Start and Reg Pix are associated with the pixels in every remaining region
(start and pointer). If 4 = Start_S, then 4 is the label of the first region and Start(4) is the
first pixel in 4. Reg Pix is the pointer to subsequent pixels. Using Start_S, Ptr_S, Start
and Reg Pix, this function collects the pixels in every remaining region and forms the
two row vectors Segmentation and Regns of dimension nm. If pixel x belongs to a region

A, then

Regns(x) = A and Segmentation(x) = C(A) (single-channel),
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where C(4) is the PC value of the approximation to the original image that is associated
with region 4. Thus, after transforming the two row vectors Segmentation and Regns into
an nxm-matrix by the function Vect_to_Img 1 in Section 5.4.2, these two matrices
represent the remaining regions in the final segmentation (by label) and the piecewise
approximation to the original image, respectively.

In the multichannel setting we simply replace the last scalar assignment statement

above by a vector assignment:
Segmentation(:,x) = C(:,A) (multichannel),

where C is the exnm array of piecewise linear coefficients. Then one must transform the
cxnm array Segmentation into c-channel image data by, for example, applying
Vect_to_Img_1 to each of the rows of Segmentation.

5.4.2 Function Vect to Img 1

The function Vect_to_Img_1 has inputs m, and V. The dimension of the vector Vis a
multiple of m, say nm. The function transforms the vector V into an nxm-matrix called
Image, the output. The components of the vector are laid along the rows of the matrix.

5.4.3 Function Display_ith_reg

The inputs to the function Display_ith_reg are 4, Start, Reg Pix, nm, and C. The
output is the nm row vector ith_region. A is the label of the ith-region obtained using the
array Final Regions provided by the function Display_Reg Pix of Section 5.4.1. This
function does for region 4 what Display Reg Pix does for every region in the final
segmentation; namely, it builds the nm row vector ith region, which contains zeros
everywhere except at the locations corresponding to the pixels of region 4. At these
locations it will either contain the label 4 or the constant value C(4) of the piecewise
approximation to the original image that is associated with region 4 of the segmented
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image. The vector ith_region is then transformed into an array by the function
Vect_to_Img_1 that can be used to displays the ith-region by itself.

In the multichannel setting, we use the label 4 or C(:,4), the c-vector of coefficients.
If the label 4 is used, then the output ith_region is a row vector that the function
Vect_to_Img_1 can transform into an nxm image. If the multichannel coefficient vector
C(:,4) is used, then Vect_to_Img_1 must be applied to each row of the exnm array

ith_region.

5.4.4 Function Display Boundary

The inputs are Final_Regions, Start_B, Ptr_B, Reg_B, and nm. The outputs are Bndrs
and Reg B. The arrays Start_B and Ptr_B are the start and pointer arrays for Reg B,
which contains the boundary point labels. Reg B will be modified by this function as
described subsequently.

There are vertical virtual boundaries (see Section 5.1.2 about virtual boundary points)
between consecutive pixels on the same row with labels 1 through nm. To display a
vertical virtual boundary point, we use the pixel with the same label. Thus, this is a left
representation in the sense that the boundary between two consecutive horizontal pixels is
represented by the pixel on the left.

The horizontal virtual boundaries, labeled (nm + 1) through 2nm, are the boundaries
between two consecutive pixels on the same column. To display a horizontal virtual
boundary point, we use the pixel with label equal to the label of the boundary point minus
nm. Thus, this is an up representation in the sense that the boundary between two

consecutive vertical pixels is represented by the pixel on the top.

Remark. Giving the horizontal virtual boundaries a label different from the Jabels of
the vertical ones is not necessary. At the end (at this point) we end up using the same
pixel in the representation of the boundary points whose labels differ by nm. Thus, a
different label is not necessary to begin with (see Section 5.1.2.).
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This function builds the binary nm-row vector Bndrs with a one at every entry

corresponding to a pixel representing a boundary point according to the preceding
convention.

The array Final Regions provides the labels of the regions in the final segmentation.
If A = Final_Regions(i), then A is the label of the ith-region. Start_B(A4) is the address in
Reg B of the first boundary point of 4; that is, Reg_B(Start_B(A4)) is the first boundary
point of 4. Using a while loop inside a for loop that sweeps through all the final regions,
the function searches through the array of boundary labels in Reg B. Only if Reg_B(x) >
nm, is Reg_B modified by setting Reg B(x) = Reg_B(x) - nm. Then, Bndrs(Reg_B(x)) is
set equal to 1.

5.4.5 Function Display ith_Bndry

The function Display_ith_Bndry builds the binary nm-row vector ith_Boundary, the
output of the function, which contains a one at every entry corresponding to a pixel
representing a boundary point of the ith-region in the final segmentation according to the
convention in the description of the previous function. It can be used to display the
boundary of that region alone. The inputs to the function are 4, Start_B, Ptr_B, Reg_B,
and nm.
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Appendix
MATLAB PROGRAM

function [Regs,Segmt,Boundaries] = Tile_Max_Reg_Grow_B(n,m,level,Image,Threshold,lam)

» % PIECEWISE CONSTANT, ONE CHANNEL.
T=Threshold;
nm=n*m;
lambda=lam*lam*sqrt(nm);

'INITIALIZING' % PART 1.
[S,E,RP,P_S,Strt_S,End_S]=initialize(nm);
[M,V,C,S N,E N,P_N,S B,E B,P BR N,R B]=NGB_PNTR _init B(Image lambda,n,m);

'TILING' % PART 2.

[T1,T2]=tile(n,m,level);

M,V,C,S N,E N,P N,R_N,S,E.RP,S B,E B,P_B,R_B]=swp_rg_Tile B(n,mM,....
V,C,T,T1,T2,leve,S N,E N,P N,R N,S,E,RP,S B,E B,P_B,R_B);

'STEEPEST DESCENT' % PART 3.
[R,N,MAX Criter]=max_criterion(Strt_S,P_S,S N,P_N,R_N);
iteration = -1;
while MAX_Criter > Threshold
iteration=iteration+1;
[M,V,C,S NNE N, P NNR N,S BE B,P BR Bl=mrg N B(RNM,V,C....
S N.E_ N,P_ N,R_N,S B,E B,P BR B);
[S,E,RP]=merge_pix(R,N,S,E,RP);
if rem(iteration,fix(n)) ==
[Strt_S,End_S,P_S]=cls_rnks(Strt_S,End_S,P_S,S);
ITERATION=iteration
end
[R,N,MAX_Criter]=max_criterion(Strt_S,P_S,S N,P_N,R_N);
end
% PART 4.
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'COLLECTING REGIONS, BOUNDARIES, & THE PC-SEGMENTED IMAGE'
[Regs,Segmt,Final Regions]=Display_Reg_Pix(Strt_S,P_S,S,RP,C);
Number_of_Regions=length(Final_Regions)
Regs=Vect_to_Img_1(m,Regs);

Segmt=Vect_to_Img_1(m,Segmt); % SINGLE-CHANNEL

%for i=1:length(Final_Regions)

% ith_region=Display_ith_reg(Final_Regions(i),S,RP,nm,C);

% ith_region=Vect_to_Img_1(m,ith_region);

% pause

%end
[Boundaries,R_B]=Display_Boundaries(Final_Regions,S_B,P_B,R_B,nm);
Boundaries=Vect_to_Img_1(m,Boundaries);

%for i=1:length(Final Regions)

% ith_Boundary=Displ_ith_Bndry(Final_Regions(i),S_B,P_B,R_B,nm);
% ith_Boundary=Vect_to_Img_1(m,ith_Boundary);

% pause

%end :
subplot(3,1,2),imagesc(Segmt); axis image; %mesh(Segmt)
subplot(3,1,3),imagesc(Boundaries); axis image; ~%mesh(Boundaries)

PART 1
INITIALIZING

function [Start,End,Reg Pix,P_S,Strt_S,End_S] = initialize(nm)
% To initialize Start, End, Reg_Pix, P_S, Strt_S, and End_S

Reg_Pix=zeros(1,nm); % Pointer to pixels in region k. Pixels start at
Start=[1:nm]; % Start(k) and continue along Reg_Pix(*) by
End=Start; % iterating: Reg_Pix(Start(k)),

% Reg_Pix(Reg_Pix(Start(k))),...untill we reach

% a zero; i.e. Reg_Pix(End(k))=0.
P_S=[[2:nm] 0]; % Pointer to the non-zero entries in Start.
Strt_S=1; % Beginning of non-zero entries in Start.
End S=nm; % End of non-zero entries in Start.

function [M,V,C,Start. N,End_N,Ptr_N,Start B,End_B,...
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Ptr_B,Reg_N,Reg_B] =NGB_PNTR_init_B(Image,lambda,n,m)

- % To initialize M, V, C, Start N, End_N, Ptr N, Start_B, End_B, Ptr_B,

% Reg_N, and Reg_B.

% Reg_N(1,:)=List of neighbors.
% Reg_N(2,:)=List of common boundary lengths.
% Reg_N(3,:)=List of merging criteria.

% Reg_B=List of common boundary points.

% Start_N=beginnings of neighbor lists.
% Start_B=beginnings of boundary points lists.

% End_N=ends of neighbor lists.
% End_B=ends of boundary points lists.

% Ptr_N=pointer to neighbors in the lists in Reg_N(1,:), a 1x4nm-array.
% Ptr_B=pointer to boundary points in the lists in Reg_N(4,).

% Initially Start N=Start_B, End_N=End_B, and Ptr_N=Ptr_B.

nm=n*m,

Q=ones(1,nm);

M=Q;

V=Img_Vect_1(n,m,Image); % For multichannel data use:
% for i=1:ch
%  V(i,:)=Img_Vect_1(n,m,CHANNELC(}));
% end

C=V,;

End_N=4*[1:nm];
Start N=End_N-3*Q;

Ptr N(End_N)=zeros(1,nm);
Ptr_N(Start_N)=Start_N+Q;

Ptr N(Start N+Q)=Start N+2*Q;
Ptr_N(Start_N+2*Q)=Start_N+3*Q;

Start B=Start N;




End_B=End_N;
Ptr B=Ptr_N;

Reg N=zeros(3,4*nm);
Reg B=zeros(1,4*nm);

for i=2:n-1
for j=2:m-1

k=(i-1)*m+j;
k4=4%*k;
Reg N(1,k4-3)=k-m;
Reg N(2,k4-3)=1;
Reg N(1,k4-2)=k-1;
Reg N(2,k4-2)=1;
Reg N(1,k4-1)=k+m;
Reg N(2,k4-1)=1;
Reg N(1,k4)=k+1;
Reg N(2,k4)=1;

Reg_B(k4-3)=nm+k-m

Reg B(k4-2)=k-1;
Reg B(k4-1)=nm+k;
Reg B(k4)=k;

end

% j=m
k=i*m;
k4=4%*k;
Reg N(1,k4-3)=k-m;
Reg N(2,k4-3)=1;
Reg N(1,k4-2)=k-1;
Reg N(2,k4-2)=1;
Reg N(1,k4-1)=k+m;
Reg N(2,k4-1)=1;

u, I, d.

Reg B(k4-3)=nm-+k-m;

Reg B(k4-2)=k-1;
Reg B(k4-1)=nm+k;

% j=1 u,d, r.
k=(i-1)*m+1;
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%u,l,d,r.

% u(k)
% 1(k)
% d(k)

% r(k)

. %uk)

% 1(K)
% d(k)

% 1(K)

% u(k)
% 1(k)
% d(k)
% u(k)

% 1(k)
% d(k)

A-4




k4=4*k;
Reg_N(1,k4-3)=k-m;
Reg N(2,k4-3)=1;
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% u(k)

Reg N(1,k4-1)=k+m; % d(k)

Reg N(2,k4-1)=1;
Reg_N(1,k4)=k+1;
Reg N(2,k4)=1;

% r(k)

Reg B(k4-3)=nm+k-m; % u(k)

Reg B(k4-1)=nm+k; % d(k)
Reg B(k4)=k; % r(k)
end
% i=1 L,d,r.
for j=2:m-1
k=j;
k4=4*k;
Reg N(1,k4-2)=k-1; % 1(k)
Reg N(2,k4-2)=1;
Reg N(1,k4-1)=k+m; % d(k)
Reg N(2,k4-1)=1;
Reg N(1,k4)=k+1; % r(k)
Reg N(2,k4)=1;
Reg_B(k4-2)=k-1; % 1(k)
Reg B(k4-1)y=nm+k; % d(k)
Reg B(k4)=k; % r(k)
% i=n u, l,r
k=(n-1)*m+j;
k4=4%*k;
Reg_N(1,k4-3)=k-m; % u(k)
Reg N(2,k4-3)=1;
Reg N(1,k4-2)=k-1; % I(k)
Reg N(2,k4-2)=1;
Reg N(1,kdy=k+1; % r(k)
Reg N(2,k4)=1;
Reg B(k4-3)=nm+k-m; % u(k)
Reg B(k4-2)=k-1; % 1(k)
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Reg B(k4)=k; % 1(k)

end
% (i,))=(1,1), k=1, d,r.

Reg N(1,3)=m+1; % d(k)
Reg N(2,3)=1;

Reg N(1,4)=2; % r(k)
Reg N(2,4)=1;

Reg B(3)=nm+l; % d(k)
Reg B(4)=1; % (k)

% (ij)=(1,m), k=m, 1,d.

k4=4*m,;

Reg N(1,k4-2)=m-1; % I(k)
Reg N(2,k4-2)=1;

Reg N(1,k4-1)=m+m; % d(k)
Reg N(2,k4-1)=1;

Reg B(k4-2)=m-1; % I(k)
Reg B(k4-1)=nm+m; % d(k)

% (i,))=(n,1) wu,r.

k=(n-1)*m+1;

k4=4*k;

Reg N(1,k4-3)=k-m; % u(k)
Reg N(2,k4-3)=1;

Reg N(1,k4)=k+1; % r(k)
Reg N(2,k4)=1;

Reg B(k4-3)=nm+k-m; % u(k)
Reg B(k4)=k; % r(k)

% (i,))=(n,m) u, L

k=nm;
k4=4*k;
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Reg N(1,k4-3)=k-m; % u(k)
Reg N(2,k4-3)=1;

Reg N(1,k4-2)=k-1; % 1(k)
Reg N(2,k4-2)=1;

Reg B(k4-3)=nm+k-m; % u(k)
Reg B(k4-2)=k-1; % I(k)

Reg N(2,:)=lambda*Reg_N(2,:);

for k=1:nm % To compute the Merging Criterion(A,B) for all A=1,2,...,nm
% and all neighbors B of A. A=k and B=Reg_N(1,Ad(i)).
[Ad,N,L,Crit}=fetch_ ADD_NGB(k,Start_N,Ptr_N,Reg_N);
if length(Ad) >= 1
len=length(Ad);
for i=1:len
M_AB=M(k)+M(Reg_N(1,Ad(i))); % B=Reg_N(1,Ad(i)) is a nghbr of A.
M_inv_AB=1/M_AB;
H=M(k)*M_inv_AB*M(Reg_N(1,Ad(1)));
Reg_N(3,Ad(i))=lambda-(C(k)-C(Reg_N(1,Ad(i))))*H*(C(k)-C(Reg_N(1,Ad(i))));
% FOR MULTICHANNEL DATA USE
%Reg_N(3,Ad(i))=lambda-(C(;,k)-C(:,Reg_N(1,Ad(i))))*H*(C(:,k)-C(:,Reg_N(1,Ad(i))));
end
end
end

function V =1Img_Vect_1(n,m,Image)

% This function transforms a matrix representation of an image to a vector
% representation of the image by concatenating the rows of the nxm-matrix

% to form an nm-row-vector V. i
% Jorge M. Martin, NAWC-WPNS Code 474400D, China Lake, CA. April 1996.

for i=1:n
i_l=i-1;
for j=1:m
V(1,i_1*m+j)=Image(i,j);
end
end
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function [Addresses,Neighbs,Lengths,Criter] = fetch_ ADD_NGB(A,Start_N,Ptr_N,Reg N)

% To get the addresses, labels, neighbors, boundary lengths,

% and criteria of region A.
% Addresses are the addresses of the labels of the neighbors of A.
% Neighbs are the labels of the neighbors of A.

if Start N(A)==0
'A has no neihgbors, A has been absorbed.’

return
end
x=Start_N(A);
whilex ~=0
if Reg_N(1,x)~=0 % First remaining neighbor of A.
Addresses=[x]; % The address of the first neighbor.
Neighbs=[Reg_N(1,x)]; % The first neighbor.
Lengths=[Reg_N(2,x)]; % The first bouncary length.
Criter=[Reg_N(3,x)]; % The first merging criterion.
end
x=Ptr_N(x); % Next neighbor.
end

PART II
TILING

function [T1,T2] = tile(n,m,level)

% To define the centers of the first four level tiles.
% level=1,2,3 or 4.

T1=sweep_array_New(n,m);
if level <=2

T2=[};

return
end
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T2=sweep_array_4(n,m,T1(2,:));

function Swp_Arr = sweep_array_New(n,m)

% To define the centers of the first two level tiles.

- % Swp_Arr=sweep_array_New(18,12)

=zeros(1,5);

a(1)=fix(m/5);

a(2)=fix((m+3)/5);
a(3)=fix((m+1)/5);
a(4)=fix((m+4)/5);
a(5)=fix((m+2)/5);

b=fix(n/5);
c=rem(n,5);

dim=b*sum(a);

ifc>=1
dim=dim+sum(a(1:c));

end

Swp_Arr=zeros(2,dim);

Swp_Arr(1,1:a(1))=5*[1:a(1)];

aa=a(1)+a(2);
Swp_Arr(1,a(1)+1:aa)=(m-3)+5*[1:a(2)];

aaa=aa+a(3);
Swp_Arr(1,aat+1:aaa)=(2*m-1)+5*[1:a(3)];

ifn>=3

Swp_Arr(2,1:a(3))=Swp_Arr(1,aa+1:aaa); % First block of Swp_Arr(2,:).

end

aa=aaa;
aaa=aata(4);
Swp_Arr(1,aa+1:aaa)=(3*m-4)+5*[1:a(4)];
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aa=aaa;
aaa=aa+a(5);
Swp_Arr(l,aa+1:aaa)=(4*m-2)+5*[1:a(5)];

ifb>1
for i=1:b-1
Swp_Arr(1,i*aaa+1:(i+1)*aaa)=5*m+Swp_Arr(1,(i-1)*aaa+1:i*aaa);
end
end

ifc>=1
aa=b*sum(a);
aaa=aatsum(a(l:c));
Swp_Arr(1,aat+1:aaa)=b*5*m+Swp_Arr(1,1:aaa-aa);
end

% The rest of Swp_Arr(2,:).

ifn>=§
d=fix((n-3)/5); %d>=1.
for i=1:d
Swp_Arr(2,i*a(3)+1:(i+1)*a(3))=(2+5*)*m-1+5*[1:a(3)]; % a(3)-Blocks.
end
end

function Swp_Arr = sweep_array_4(N,M,Arr)
% To define the centers of the level 3 and 4 tiles.

m=fix((M+1)/5);

n=1+fix((N-3)/5);

Array=Arr(1:n*m); % <======Not necessary ??.
a=zeros(1,5);

a(1)=fix(m/5);

a(2)=fix((m+3)/5);
a(3)=fix((m+1)/5);
a(4)=fix((m+4)/5);
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a(S)=fix(m+2)/5);

b=fix(n/5);
c=rem(n,5);

ifa(l)==0
return
end

dim=b*sum(a);

ifc>=1
dim=dim+sum(a(l:c));

end

Swp_Arr=zeros(2,dim);

Swp_ Arr(1,1:a(1))=Array(5*[1:a(1)]);

aa=a(l)+a(2);
Swp_Arr(1,a(1)+1:aa)=Array((m-3)+5*[1:a(2)]);

aaa=aa+a(3);
Swp_Arr(1,aa+1:aaa)=Array((2*m-1)+5*[1:a(3)]);

ifn>=3

Swp_Arr(2,1:a(3))=Swp_Arr(l,aa+1:aaa); % First block of Swp_Arr(2,:).

end

aa=aaa;
aaa=aa-+ta(4);
Swp_Arr(1,aa+1:aaa)=Array((3*m-4)+5*[1:a(4)]);

aa=aaa;
aaa=aa+a(5);
Swp_Arr(1,aa+1:aaa)=Array((4*m-2)+5*[1:a(5)]);

ifb>1
for i=1:b-1

Swp_Arr(1,i*aaa+1:(i+1)*aaa)=25*M+Swp_Arr(1,(i-1)*aaa+1:i*aaa);

end
end
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ifc>=1
aa=b*sum(a);
aaa=aa+sumf(a(l:c));
Swp_Arr(1,aat1:aaa)=b*25*M+Swp_Arr(1,1:2aa-aa);
end

% The rest of Swp_Arr(2,:).

ifn>=8
d=fix((n-3)/5); %d>=1.
for i=1:d
Swp_Arr(2,i*a(3)+1:(i+1)*a(3))=25**M+Swp_Arr(2,1:a(3)); % a(3)-Blocks.
end
end

function [M,V,C,S_N,E_N,P_N,R_N,S,E,RP,S_B,E_B,P_B,R_B] = swp_rg_Tile_B(n,m,M,...
V,C,T,T1,T2,level,S_ N.E N,P N,R_N,S,E,RP,S B,E B,P_B,R_B)

% level=1,2 3, or 4.

nm=n*m;
J=1
if level >=2
J=2;
end
for j=1:]
for k=1:length(T1(1,:))
A=T1(,k); % Region A.
ifA~=0
if S N(A)~=0 % Region A has not been absorbed yet.
[Addresses,Neighbs,Lengths,Criter]=fetch_ ADD_NGB(A,S_N,P_N,R_N);
L=length(Neighbs);
ifL>=1
for i=1:L
B=Neighbs(i);
if Criter(i)> T % Merge A and B=Neighbs(i).
[M,V,C,S N,E NP N,R N,S BE B,P_ B,R B]J=mrg N_B(A,BM,V,C,...
S N,E N,P_ N,R N,S B,E_B,P_B,R_B),

A-12




NAWCWD TP 8525

[S,E,RP}=merge_pix(A,B,S,E,RP); % RP is a pointer.
end
end
end

end

end
end
end

if level >=3
J=1;
if level >=4
J=2
end
for j=1:J
for k=1:length(T2(1,:))
A=T2(j,k); % Region A.
ifA~=0
if S N(A)~=0 % Region A has not been absorbed yet.
[Addresses,Neighbs,Lengths,Criter]=fetch_ADD_NGB(A,S_N,P_N,R_N);
L=length(Neighbs);
ifL>=1
for i=1:L
B=Neighbs(i);
if Criter(i) > T % Merge A and B=Neighbs(i).
[M,V,C,S N,E N,P N,R N,S B,E B,P_B,R B]=mrg N_B(A,BM,V.C,...
S NJE N,P N,R N,S B,E B,P_B,R B);
[S,E,RP]=merge_pix(A,B,S,E,RP); % RP is a pointer.
end
end
end
end
end
end
end
end
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PART III
STEEPEST DESCENT

function [Region,Neighbor, MAX_Criter] = max_criterion(Start_S,Ptr_S,Start N....
Ptr N,Reg N)

% To find the max criterion and the region and neighbor corresponding to it
Region=0; N .

Neighbor=0;
MAX_Criter=-1;

k=Start_S; % First non-0 region. Replaces "for k=1:nm"
while k ~=0
x=Start_N(k); % First neignbor of region k.
while x ~=0
if Reg N(1,x)~=0 % A non zero neighbor.
if MAX_Criter < Reg_N(3,x) % Merging criterion between k & x.
MAX_Criter=Reg_N(3,x); % Merging criterion is larger.
Neighbor=Reg_N(1,x); % Neigbor with largest citerion yet.
Region=k; % Region with largest citerion yet.
end
end
x=Ptr_N(x); . % Next neighbor.
end
k=Ptr_S(k); % Next region k until k=0.

end

function [M,V,C,Start_N,End_N,Ptr_N,Reg__N,Start_B,End_B,Ptr_B,Reg_B] =mrg_N_B(A,...
B,M,V,C,Start N,End_N,Ptr_ N,Reg_N,Start_B,End_B,Ptr_B,Reg_B)

% To update the pointer "Ptr_N" and the arrays Start_N, End N, and "Reg_N"

% when the merger of two regions A and B occurs.

% The pointer points to "Reg_N" which contains the labels of the neighbors

% of each region. When regions A and B are merged, the new region formed is
% labeled region A. The addresses of the neighbors of A start at

% "Start_N(A)"and end at "End_N(A)". They are: Start N(A),

% Ptr_N(Start_N(A)), Ptr_N(Ptr_N(Start_N(A))), ..; Ptr N(End_N(A))=0 marks
% the end of the list for A.
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%

% C is a common neighbor of A and B which are to be merged; A will absorb B
% To eliminate B as a neighbor from the list(C), eliminate C from the

% list(B) to avoid duplication of C in the merged list(AUB), and provide a

% pointer to A in the list(C) to increment length(A,C) in list(C) after the

% merging of A and B.

% PART 1. PC-2D-1Ch. and % Multichannel Changes.

% Update M(A), V(A), and C(A).

M(A)=M(A)Y+M(B); % a scalar. Single & Multichannel.
M_inv_A=1/M(A); % a scalar. Single & Multichannel.
V(A)=V(AY*+V(B); % V(,A)=V(,A)+V(,B), Multichannel.
C(A)=M_inv_A*V(A); % C(:,A=M_inv_A*V(:;,A);  Multichannel.

O eeerereeesessesseaseasesaes e sane s aaa et e e R ke A et e Rt sR s b s ae R et e e eae s R Ee RS RS S RS SRS RO AR SR LS L AR SRR RS R SRR e AR e AR R e s e R e PR s e e e s e bt s
% PART 2.

x=Start_N(A);
y=Start_N(B);
whilex ~=0
while y ~=0
if Reg N(1,x) ~=0 & Reg_N(1,x) ==Reg_N(l,y)
% Found a common neighbor CN = Reg_N(1,x).

CN=Reg_N(1,x); % x = pointer to CN in list(A)
% y = pointer to CN in list(B)

Reg N(1,y)=0; % Delete CN from list(B) to avoid
- % duplication in the merged list(AUB).

[Pnt_to_A_inC,Reg N]=Elim_Pnt(Reg_N(1,x),B,A,Start N,Ptr N,Reg N);
% Eliminate B from list(C); (B will be absorbed

% by A), and provide pointer_to_A_in_C to update
% length(A,C) and Criterion(A,C) in list(C).

Reg N(2,x)=Reg_N(2,x)*Reg_N(2,y); % Update length(A,C) in list(A):
' % length(A,C)=length(A,C)+length(B,C).
Reg N(2,Pnt_to_A_inC)=Reg_N(2,x); - % Update length(A,C) in list(C):
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% length(A,C)=length(A,C)+length(B,C).
Reg_N=Criterion(A,CN,x,M,C,Reg_N); % New merging criterion
% between A and CN put in list(A).
Reg N(3.,Pnt_to_A_inC)=Reg_N(3,x); % New merging criterion
% between A and C put in list(C).
end % if
y=Ptr_N();
end % while y ~=0
x=Ptr_N(x);
y=Start_N(B);
end % while x~=10

%o PART 3.
Reg N=Elim_and_Update(A,B,C,M,Start_N,Ptr_N,Reg_N);
% Update list(A), list(B), and

% the lists of the members of list(B)
% before concatenating the two lists.

v v eereeseeeeeeeeeseeteste st e ere b e Rt e b reareeR e e R sk e e st e Rt naese e e ekt eat et e Are R e et et e eSS SRS R RS SRL e SR s bRt R e s e R e ea b e eats
% PART 4.

Ptr_N(End_N(A))=Start_N(B); % To concatenate the lists for A and B.
End_N(A)=End_N(B); % The end of the list for A is now at the end of B.
Start N(B)=0; % Region B has been absorbed by A.

[Start_N,End_N,Ptr_N]=close_ranks(A,Start_N,End_N,Ptr_N,Reg_N);
[Start_B,End_B,Ptr_B,Reg B]=New_Boundary(A,B,Start B,End_B,Ptr_B,Reg_B);

function [Pnt_to_A_inC,Reg_N] = Elim_Pnt(C,B,A,Start N,Ptr N,Reg_N)

% Partially updating the list(C).
% C is a common neighbor of A and B which are to be merged; A will absorb B.

% (1) To eliminate B as a neighbor from the list(C).

% (2) To provide a pointer to A in the list(C) to update length(A,C) and
% criterion(A,C) in list(C) after the merging of A and B.

A-16




NAWCWD TP 8525

x=Start_N(C);
while x ~=
if Reg N(1,x)==B
Reg N(1,x)=0; % Region B is no longer a neighbor of C.
elseif Reg N(1,x)==A
Pnt_to_A_inC=x; % Pointer to A in the list(C).
end
x=Ptr_N(x); % Check next neighbor to see if it is B.
end

function Reg_N = Criterion(A,C,pointer,M,Coeff,Reg_N)

% Already Multichannel.
% To update the criterion(A,C) in list(A).
% pointer = pointer to C in list(A).

M_AC=M(A)+M(C);

M_inv=1/M_AC;

H=M(A)*M_inv*M(C);,

Reg N(3,pointer)=Reg_N(2,pointer)-(Coeff(A)-Coeff(C)) *H*(Coeff(A)-Coeff(C));

function Reg_N = Elim_and_Update(A,B,Coeff,M,Start N,Ptr N,Reg N)
% After taking care of common neighbors and before merging the lists of A -
% and B (B will be absorbed by A.), we need to update list(A) and list(B)

% as follows.

% Updating list(A):

% (1) Eliminate B as neighbor from the list(A).

% (2) Update criterion(A,C) for every neighbor C in list(A) exept neighb B.
% (3) Update criterion(A,C) in list(C) for every neighbor C in list(A)

%  exept neighbor B.

% Updating list(B) and the lists of the members of list(B):

% (1) Eliminate A as neighbor from the list(B).
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% (2) Update criterion(A,C) for every neighbor C in list(B) exept neighb A.
% (3) Replace B by A in the list(C) for all the neighbors C of B in list(B)
%  except neighbor A and update criterion(A,C) in list(C).

% NOTE that if C is a common neighbor of A and B, then B will have been

% replaced by 0 at the common neighbor stage (i.e. function "Elim_Pnt").
% Thus there will be no duplication of A in the list(C).

% Updating list(A).

x=Start_N(A); % x=pointer to first neighbor C=Reg_N(1,x) in list(A).
while x ~=0 % Ptr_N(x)=pnt to next nghb C=Reg_N(1,Ptr_N(x)) in list(A).
if Reg_N(1,x) ==
Reg N(1,x)=0; %Step (1).
elseif Reg N(1,x)~=0
Reg_N=Criterion(A,Reg_N(1,x),x,M,Coeff,Reg_N); %Step (2).

Reg_N=Update_criterion(Reg_N(1,x),A,M,Coeff,Start_N,Ptr N,Reg N); %Step (3).
end
x=Ptr_N(x); % Check next neighbor to see if it is B.

end

% Updating list(B) and the lists of the members of list(B).

x=Start_N(B); % x=pointer to first neighbor C=Reg_N(1,x) in list(B).
while x ~=0
if Reg N(1,x)==A

Reg N(1,x)=0; % Step (1).
elseif Reg N(1,x)~=0
Reg N=Criterion(A,Reg_N(1,x),x,M,Coeff,Reg_N), % Step (2).

Reg_N=replaceB_by_A(A,B,Reg_N(1,x),Coeff,M,Start_N,Ptr N,Reg N); % Step (3).
end
x=Ptr_N(x); % Check next neighbor to see if it is A.

end

function [Start N,End_N,Ptr_N] = close_ranks(A,Start_N,End_N,Ptr N,Reg N)

% To skip over the addresses in the pointer Ptr_N that correspond to
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% regions in list(A) that have been absorbed and adjust Start_N and End_N.

% Note that when region "A" absorbs region "B" the list for "A" becomes the
% union of list(A) and list(B), and it has at least two new zeros; one for

% "B" in list(A) and one for "A" in list(B). Thus, the array Reg_N(1,:) has

% at least two new zeros as well.

% The lables of the remaining regions are the non-zero entries

% of Reg_N(1,:).

% Here, region "A" has absorbed region "B"; however, we check all zeros in
% list(A). Extra zeros may exist in list(A) if a neighbor of "A" has

% absorbed a region that is also a neighbor of "A" (see "Elim_Pnt").

x=Start_ N(A);
ifx~=0
End N(A)=x;
while Reg N(1,x)==0
x=Ptr_N(x);
ifx ==
return
end
Start N(A)=x;
End_N(A)=x;
end

while Ptr N(x) ~=0
y=Ptr N(x);
if y ==
return
end
while Reg N(1,y)==20
Ptr N(x)=Ptr_N(y); % Zeros will be "skipped" by Ptr N in list(A).
y=Ptr_N(y); |
if y==
return
end
end
X=y; % Continue looking for zeros until Ptr_N(x)=0.
End_N(A)=y;
end
end
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function [Start B,End_B,Ptr_B,Reg B] = New_Boundary(A,B,Start_B,End_B,Ptr__B,Reg_B)

% To obtain the boundary of the union of the two regions A and B.

% The addresses of the boundary points of A are Start_B(A), Ptr_B(Start_B(A)),
% ...Ptr_B(...Ptr_B(Start_B(A))), ...End_B(A); Ptr_B(End_B(A))=0 marks the end
% of the list. Same for B.

% There are two steps: (1) Delete points that are common to both boundaries
% and (2) Concatenate the two lists and close ranks..

% Step 1.

x=Start_B(A);
y=Start_B(B);
while x ~=0
whiley ~=0
if Reg_B(x) == Reg_B(y)
Reg B(x)=0;

Reg_B(y)=0; % and/or close ranks!
end
y=Ptr_B(y);
end
x=Ptr_B(x);
y=Start_B(B);
end '
% Step 2.
Ptr_B(End_B(A))=Start_B(B); % To concatenate the lists for A and B.
End_B(A)=End_B(B); % The end of the list for A is now at the end of B.
Start_B(13)=0; % Region B has been absorbed by A.

[Start_B,End_B ,Ptr_B]=close_ranks(A,Start_B,End__B,Ptr_B,Reg_B);

function Reg N = Update_criterion(C,A,M,Coeff,Staﬂ_N,Ptr_N,Reg_N)

% To update Criterion(C,A) in list(C).
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x=Start_N(C); % x = pointer to the first neighbor of C.
while x ~=0
if Reg N(1,x)=A % Update Reg_N(3,x)=criterion(C,A).
Reg_N=Criterion(C,A,x,M,Coeff,Reg_N);
end
x=Ptr_N(x); ’ % Check next neighbor to see if it is A.
end

function Reg_N = replaceB_by_A(A,B,C,Coeff,M,Start N,Ptr N,Reg_N)

% To replase B by A in list(C) and update criterion(A,C) in list(C).

x=Start_N(C); % x = pointer to the first neighbor of C.
while x ~=
if Reg_N(1,x)==B % Replace B by A and update criterion(A,C) in
% list(C).
Reg N(1,x)=A; % Region B has been replaced by A.
Reg_N=Criterion(C,A,x,M,Coeff,Reg N);
end
x=Ptr_N(x); "% Check next neighbor to see if it is B.
end

function [Start,End,Pointer] = merge_pix(A,B,Start,End,Pointer)

% To update the pointer "Pointer" when a merging of regions A and B occurs.
% The pointer points to the pixels in regions A and B. The new region is

% labled A.

Pointer(End(A))=Start(B);
End(A)=End(B);
Start(B)=0;

function [Strt_S,End_S,P_S] = cls_rnks(Strt_S,End_S,P_S,Start)

% To skip over the addresses in the pointer P_S that correspond to
% a region that has been absorbed and adjust Strt_S and End_S.
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9% Note that when region "A" absorbs region "B" the pixels for "A" becomes
% the union of pixels(A) and pixels(B), and Start has a new zero at
% Start(B).

x=Strt_S;
End_S=x;
while Start(x) ==
x=P_S(x);
if x ==
return
end
Strt_S=x;
End_S=x;
end

while P_S(x) ~=0
y=P_S(x);
if y == 0, return, end
while Start(y) ==0

P_S(x)=P_S(y); % A zero will be "skipped" by P_S.
y=P_S(y);
ify==0
return
end
end
X=Y; % Check next entry.
End_S=y;
end
PART IV

COLLECTING REGIONS & BOUNDARIES & THE PC-SEGMENTED IMAGE

function [Regns,Segmentation,Final_Regions] = Display_Reg_Pix(Start_S,Ptr_S,Start,...
Reg_Pix,C)

% To collect the lables of all the regions in the final segmentation and
% put them in the array Final_Regions. The size of Final_Regions is the
% number of regions in the segmentation.
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% To assign the lable "A" to every pixel in region A for every region A in
% the final segmentation and put it in the 1xnm-array Regns.

% To assign the piecewise constant value C(A) to every pixel in region A
% for every region A in the final segmentation and put it in the 1xnm-array

% Segmentation.

% Start_S and Ptr_S are associated with the lables of regions .
% Start and Reg_Pix are associated with the pixels ("start & pointer").

Final_Regions=[];

A=Start_S; % First region in the final segmetation has lable A.
while A ~=0
if Start(A) ~=0
Final_Regions=[Final_Regions A]; % A is a final region.
x=Start(A); % First pixel in region A.
Regns(x)=A; % Pixel x receives lable A.
Segmentation(x)=C(A); % In the segmented image, pixel x has PC-value C(A).
% Segmentation(:,x)=C(:,A); % MULTICHANNEL PC-value.
x=Reg_Pix(x); % Next pixel in region A.
while x ~=0
Regns(x)=A; % All pixels x in A receive lable A.
Segmentation(x)=C(A); % All pixels x in A have PC-value C(A).
x=Reg_Pix(x); % Next pixel in region A.
end
end
A=Ptr_S(A);, % Next region in the final segmentation.
end

function Image = Vect_to_Img_1(m,V)
% This function transforms a vector representation of an image V into a
% matrix representation "Image". The matrix "Image" is nxm.

% Jorge M. Martin, NAWC-WPNS Code 474400D, China Lake, CA. April 1996.

L=length(V); % L=nm should be a multiple of m.
for k=1:L

A-23



NAWCWD TP 8525

Image(fix((k-1)/m)+1,rem(k-1,m)+1)=V(k);

end

function ith_region = Display_ith_reg(A,Start,Reg_Pix,nm,C)

% A is the lable of the ith-region. The nm-row vector "ith_region" will

% contain zeros everywhere exept at locations corresponding to the pixels
% of region A. At these locations it will either contain the lable "A" or

% the constant value C(A) of the approximation to the original image that
% is associated with region A of the segmented image.

ith_region=zeros(1,nm);

if Start(A) ~= 0

x=Start(A); . % x is the First pixel in region A.
ith_region(X)=A; % Lable A put at location X...,0r...
% ith_region(x)=C(A); % constant value C(A) put at location Xx.
x=Reg_Pix(x); % Next pixel in region A.
while x ~=0
ith_region(x)=A; % Lable A put at location X...,0r...
% ith_region(x)=C(A); % constant value C(A) put at location x.
x=Reg_Pix(x); % Next pixel in region A.
end
end

function [Bndrs,Reg_B] = Display_Boundaries(F inal_Regions,Start_B,Ptr_B,Reg_B,nm)
% To put a one on every k in {1,2,...,nm} that is a boundary point.

Bndrs=zeros(1,nm);
N=length(Final_Regions);
for i=1:N
x=Start_B(Final_Regions(i));
while x ~=0
if Reg_B(x) > nm
Reg B(x)=Reg_B(x)-nm;
end

if Reg_B(x)~=0
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Bndrs(Reg_B(x))=1;
end
x=Ptr_B(x);
end
end

function ith_Boundary = Displ_ith_Bndry(A, Start_B,Ptr_B,Reg_B,nm)
% To get the pixels of the ith-boundary.
ith_Boundary=zeros(1,nm);

x=Start_B(A);
whilex ~=0

if Reg B(x)~=10
ith_Boundary(Reg_B(x))=1;
end
x=Ptr_B(x);
end

A-25




INITIAL DISTRIBUTION

1 Naval War College, Newport (1E22, President)

1 Headquarters, 497 INOT, Falls Church (IOG Representative)

2 Defense Technical Information Center, Fort Belvoir

1 Center for Naval Analyses, Alexandria, VA (Technical Library)

ON-SITE DISTRIBUTION

3 Code 4TLO0OD (2 plus Archives copy)
22 Code 4T4100D
S. Chesnut (1)
J. Martin (21)




